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Abstract: Background: Brain tumor diagnosis requires precise and timely detection, which
directly impacts treatment decisions and patient outcomes. The integration of deep learning
technologies in medical diagnostics has improved the accuracy and efficiency of these pro-
cesses, yet real-time processing remains a challenge due to the computational intensity of
current models. This study introduces the Real-Time Object Detector for Medical Diagnos-
tics (RTMDet), which aims to address these limitations by optimizing convolutional neural
network (CNN) architectures for enhanced speed and accuracy. Methods: The RTMDet
model incorporates novel depthwise convolutional blocks designed to reduce computa-
tional load while maintaining diagnostic precision. The effectiveness of the RTMDet was
evaluated through extensive testing against traditional and modern CNN architectures
using comprehensive medical imaging datasets, with a focus on real-time processing ca-
pabilities. Results: The RTMDet demonstrated superior performance in detecting brain
tumors, achieving higher accuracy and speed compared to existing CNN models. The
model’s efficiency was validated through its ability to process large datasets in real time
without sacrificing the accuracy required for a reliable diagnosis. Conclusions: The RTMDet
represents a significant advancement in the application of deep learning technologies to
medical diagnostics. By optimizing the balance between computational efficiency and
diagnostic precision, the RTMDet enhances the capabilities of medical imaging, potentially
improving patient outcomes through faster and more accurate brain tumor detection. This
model offers a promising solution for clinical settings where rapid and precise diagnostics
are critical.

Keywords: brain tumor detection; medical diagnostics; computational efficiency; neuro-oncology

1. Introduction
The critical nature of brain tumor diagnosis demands precision and timeliness that

can profoundly influence treatment decisions and outcomes [1]. Traditional approaches
rely heavily on the expertise of radiologists who interpret medical images manually [2], a
method that faces challenges due to the complexity of brain tumors and the sheer volume
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of diagnostic data [3]. To address these challenges, there has been a notable shift toward
utilizing deep learning technologies [4], which promise significant enhancements in the
accuracy and efficiency of diagnostic procedures in neuro-oncology [5]. Deep learning’s
integration into medical diagnostics has revolutionized image analysis [6], significantly
improving both the speed and accuracy of automated systems [7]. CNNs, in particular,
excel at recognizing complex patterns in data [8], making them ideal for medical imaging
tasks. The RTMDet system [9] utilizes these capabilities to deliver real-time analytical
processing that accommodates the large volumes of data typically used in modern medical
settings without compromising on the detail needed for accurate diagnosis. At the core
of the RTMDet’s advancements are depthwise separable convolutional blocks [10]. These
blocks streamline the processing of images by reducing the computational load per layer
while preserving or enhancing the system’s ability to detect subtle image features crucial
for identifying brain tumors [11]. Such architectural improvements not only facilitate
faster image processing but also lower the operational requirements, making sophisticated
diagnostics more accessible and scalable. Despite significant advancements in medical
imaging technologies, the diagnosis of brain tumors remains a complex challenge that
directly impacts treatment outcomes and patient survival rates. Current methodologies
often rely on the expertise of radiologists to interpret complex imaging data, a process that
can be time-consuming and susceptible to human error. Furthermore, existing automated
systems, while beneficial, still face challenges related to the high computational demands
and lack of real-time processing capabilities. These limitations underscore the need for an
innovative approach that enhances the precision and efficiency of brain tumor detection.

This paper introduces a significant innovation in computer vision with the develop-
ment of the RTMDet. This system harnesses advanced deep learning to refine the accuracy
of brain tumor detection, reconfiguring the conventional approaches used in CNN models
through the integration of novel depthwise convolutional blocks. These modifications
are designed to optimize both the computational efficiency and accuracy of detections.
The primary goal of this research is to validate the effectiveness of the RTMDet in brain
tumor detection, emphasizing its capability to operate in real time and to perform com-
parably or better than both traditional and modern CNN architectures. This study aims
to highlight the system’s computational efficiency and superior diagnostic precision. The
contributions of this research include the development of an optimized architecture that
adapts depthwise convolutional blocks for enhanced image analysis in medical diagnos-
tics. This paper also offers a thorough evaluation of the system’s performance against the
established standards, employing comprehensive datasets to confirm its robustness and
reliability for practical applications. The RTMDet [9] marks a progressive step in applying
deep learning to medical diagnostics, offering potential improvements in the speed and
accuracy of detecting brain tumors. This could significantly better patient outcomes by
enabling earlier and more accurate diagnoses. The subsequent sections of this paper will
elaborate on the methodology behind the RTMDet, detail the experiments for performance
validation, and discuss the implications of the findings in the broader context of medical
diagnostic technologies.

2. Related Works
The intersection of medical imaging and artificial intelligence (AI) has witnessed

significant advancements in recent years, particularly through the application of CNNs in
the diagnosis and detection of medical conditions such as brain tumors [12]. This section
reviews the pivotal contributions made in this field, underscoring the evolution of CNN
architectures and their specialized adaptations for medical diagnostics.
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CNNs have become the backbone of image recognition tasks due to their ability to
efficiently process spatial hierarchies in images [13]. In medical imaging, CNNs have been
employed to interpret complex patterns in MRI and CT scans, providing critical diagnostic
insights that surpass traditional analysis methods [14]. Specific to brain tumor detection,
deep learning models have shown a remarkable capability to enhance the precision of
diagnoses [15]. The study in [16] highlights the effectiveness of employing transfer learning
architectures such as ResNet152, VGG19, DenseNet169, and MobileNetv3. These results
underscore the potential of deep transfer learning architectures to revolutionize the field
of medical imaging, particularly in the accurate and efficient diagnosis of brain tumors.
Ref. [17] explored the utilization of CNNs combined with transfer learning to enhance the
classification and detection accuracy of brain tumors using MRI images. Their system,
which utilized pre-trained models like Inception V3, demonstrated superior performance
in terms of both enhancing image contrast and achieving high diagnostic accuracy. Ref. [18]
emphasizes the use of optimized deep learning frameworks, which align with the goals of
our RTMDet system. Their work specifically explores enhanced segmentation and classifica-
tion capabilities, which are crucial for high-stakes medical applications like neuro-oncology.
These findings underscore the shared goal of our research to push the boundaries of medical
imaging technology, ensuring rapid and accurate diagnoses that can significantly influence
treatment outcomes. Ref. [19] discusses the importance of transparency in DL models used
for brain tumor detection, noting that despite high accuracy rates, the ‘black-box’ nature
of these models can hinder their adoption in clinical settings where understanding the
basis of predictions is crucial. This is particularly relevant to our RTMDet system, where
enhanced interpretability could not only improve diagnostic trust but also allow medical
professionals to make more informed decisions based on AI-driven insights. Ref. [20]
illustrates the effectiveness of combining CNN architectures with transfer learning methods
like VGG16 and InceptionV3, which have been instrumental in achieving high diagnos-
tic accuracies. This aligns with our findings, where enhanced model architectures could
significantly elevate diagnostic performance and reliability. The authors in Ref. [21] have
pioneered an innovative approach that integrates Mobilenetv2 with the Contracted Fox
Optimization Algorithm, significantly boosting the model’s performance in diagnosing
brain tumors. This method aligns with our research by emphasizing the critical role played
by hyperparameter optimization in deep learning applications for medical imaging, under-
scoring the potential of metaheuristic algorithms to refine diagnostic accuracy. Ref. [22]
introduced TumorAwareNet, which combines an attention-based sparse convolutional
denoising autoencoder with a neural support vector classifier. This integration not only
enhances the specificity of tumor detection but also ensures robust feature representation,
leading to significant improvements in model performance across various benchmarks. The
TumorAwareNet model has demonstrated exceptional accuracy in distinguishing between
tumor types, illustrating the critical role played by advanced machine learning techniques
in medical diagnostics. Ref. [23] utilizes the MBConv-Finetuned-B0 model, initially devel-
oped with comprehensive pre-training on the ImageNet dataset. This model undergoes
meticulous fine-tuning with additional layers specifically designed for medical imaging,
enabling precise tumor identification with notable accuracy. This approach mirrors the
objectives of our research, emphasizing the importance of fine-tuning and domain-specific
adaptations to enhance diagnostic capabilities in medical imaging. Ref. [24] presents a
novel approach where the Whale Social Spider Optimization Algorithm (WSSOA) is em-
ployed to enhance the feature selection process in deep convolutional neural networks
for brain tumor classification. A prime example is the study in [25], which developed the
DEF-SwinE2NET model that combines EfficientNetV2S with a Swin Transformer and a
dual enhanced features scheme. This model employs advanced preprocessing optimiza-
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tion techniques, including median-filter noise reduction and contrast-limited adaptive
histogram equalization, to improve the quality of MRI images before model training. One
notable development in this area is the Pyramid Quantum Dilated Convolutional Neural
Network (PyQDCNN) model [26]. This model incorporates advanced strategies like the
Tasmanian Devil Optimization and Quantum Dilated Convolutions within a PyramidNet
framework, achieving multi-level classification with a robust feature extraction process
that significantly improves classification accuracy. The integration of deep learning into
brain tumor detection has marked a significant advancement in medical diagnostics, with
the RTMDet system emerging as a notable innovation. This system departs from tradi-
tional CNN architectures by incorporating depthwise convolutional blocks, which reduce
computational load without compromising the ability to detect subtle, critical features in
medical images. The RTMDet excels in its ability to process data efficiently, performing at
speeds necessary for real-time applications while maintaining high accuracy. This makes it
particularly effective in clinical settings, where timely and precise diagnostics are crucial.
Its performance is enhanced by an architectural design that minimizes computational de-
mands, setting it apart from other sophisticated models like the Pyramid Quantum Dilated
Convolutional Neural Network or those optimized by complex algorithms such as the
Contracted Fox Optimization Algorithm. What sets the RTMDet apart is its meticulous
design tailored for high diagnostic precision, confirmed through rigorous testing. The
system demonstrates higher sensitivity and specificity in detecting brain tumors compared
to other advanced models. This precision is crucial in clinical environments, where the
ability to make accurate diagnoses quickly can significantly influence treatment decisions
and outcomes. Moreover, the RTMDet’s adaptability and scalability ensure that it can be
effectively deployed in diverse medical settings. It adjusts seamlessly to different imaging
modalities and protocols, an advantage over models that may require more controlled
conditions to achieve optimal performance. The RTMDet not only meets but exceeds the
current needs of medical diagnostics through its innovative use of deep learning technolo-
gies. By offering both speed and accuracy, the RTMDet enhances the capabilities of medical
imaging, ultimately improving patient outcomes in the realm of brain tumor detection.
This system’s blend of efficiency, adaptability, and precision underscores its superiority in
the rapidly evolving field of medical imaging technology. Despite these advancements,
several challenges remain in the broader application of AI in medical diagnostics. Issues
such as data heterogeneity, model interpretability, and the need for extensive validation
in clinical trials present ongoing challenges. However, these challenges also represent
opportunities for future research, particularly in developing more robust models that can
generalize across different imaging modalities and patient demographics.

3. Methodology
In this paper, we present a novel approach utilizing a deep learning model where

we conduct an empirical study of designing real-time object detectors (RTMDet). This
study involves a modification of the model by integrating our newly developed depthwise
convolution module (DepthConvModule), as depicted in Figure 1. Our enhancement
specifically aims to augment the accuracy of the model and decrease the computational
complexity of the model in detecting brain tumors for medical applications. A detailed
explanation of the baseline model is provided in Section 3.1, while the complete architecture
of our modification is detailed in Section 3.2.



Bioengineering 2025, 12, 274 5 of 20Bioengineering 2025, 12, x FOR PEER REVIEW 5 of 19 
 

 

Figure 1. The proposed modifications of the baseline model. 

3.1. RTMDet 

The RTMDet model represents a cutting-edge initiative in the field of computer vi-
sion, specifically designed to enhance the performance of object detection systems in real-
time applications. This model is structured to address the critical demands of speed and 
accuracy required in dynamic environments such as medical imaging, autonomous driv-
ing, and surveillance. Built upon a deep learning framework, the RTMDet leverages 
CNNs to process and analyze high-dimensional data with minimal latency, making it par-
ticularly well suited for scenarios where timely and precise detection is essential (Table 
1). At the core of the RTMDet model lies its foundation of CNNs, where a series of convo-
lutional layers facilitate the extraction and interpretation of spatial hierarchies in image 
data. This architectural design allows for robust object recognition at varying scales and 
orientations, ensuring adaptability across diverse detection challenges. A significant in-
novation within the RTMDet is the integration of depthwise convolutional blocks 
(DWConvBlocks), which introduce depthwise separable convolutions. This architectural 
refinement decomposes the convolution process into two operations: a depthwise convo-
lution for spatial feature extraction and a pointwise convolution for dimensionality ad-
justment. By employing this structure, the model effectively reduces computational com-
plexity while preserving or even enhancing its ability to discern intricate details within an 
image. 

  

Figure 1. The proposed modifications of the baseline model.

3.1. RTMDet

The RTMDet model represents a cutting-edge initiative in the field of computer vision,
specifically designed to enhance the performance of object detection systems in real-time
applications. This model is structured to address the critical demands of speed and accuracy
required in dynamic environments such as medical imaging, autonomous driving, and
surveillance. Built upon a deep learning framework, the RTMDet leverages CNNs to
process and analyze high-dimensional data with minimal latency, making it particularly
well suited for scenarios where timely and precise detection is essential (Table 1). At the
core of the RTMDet model lies its foundation of CNNs, where a series of convolutional
layers facilitate the extraction and interpretation of spatial hierarchies in image data. This
architectural design allows for robust object recognition at varying scales and orientations,
ensuring adaptability across diverse detection challenges. A significant innovation within
the RTMDet is the integration of depthwise convolutional blocks (DWConvBlocks), which
introduce depthwise separable convolutions. This architectural refinement decomposes
the convolution process into two operations: a depthwise convolution for spatial feature
extraction and a pointwise convolution for dimensionality adjustment. By employing this
structure, the model effectively reduces computational complexity while preserving or
even enhancing its ability to discern intricate details within an image.
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Table 1. Summarizing the key aspects of the RTMDet Model.

Aspect Description

Foundation of CNNs

Built on CNNs, the RTMDet utilizes
multiple convolutional layers to extract

and interpret spatial hierarchies in image
data, enabling effective object recognition

at various scales and orientations.

Integration of Depthwise Convolutional
Blocks

Incorporates depthwise separable
convolutions (DWConvBlocks), where
depthwise convolutions handle spatial

feature extraction and pointwise
convolutions adjust dimensionality. This
reduces computational complexity while

maintaining high feature resolution.

Real-Time Processing Capabilities

Optimized for real-time performance with
computational techniques such as batch

normalization and skip connections. These
enhancements improve training efficiency
and gradient flow, preventing vanishing

gradient issues in deep networks.

Adaptations for Medical Imaging

Fine-tuned for detecting brain tumors by
adjusting filter sizes and strategically

placing depthwise blocks. These
refinements enhance sensitivity to

medical-specific features, improving
detection precision.

Deployment and Practical Applications

Designed for integration into medical
imaging systems, the RTMDet enables
real-time analysis and alerts for early

disease detection. Beyond medical
applications, its adaptable architecture

supports various real-time object
detection tasks.

The RTMDet model incorporates depthwise separable convolutional blocks, which are
specifically designed to optimize computational efficiency without sacrificing the accuracy
needed for precise medical diagnostics. Depthwise separable convolutions divide the
convolution operation into two separate layers: one for filtering and one for combining. The
first layer, the depthwise convolution, applies a single filter per input channel, significantly
reducing the computational complexity by separating the spatial and depth dimensions.
The second layer, the pointwise convolution, then combines the output of the depthwise
layer by applying a 1 × 1 convolution. This method reduces the number of mathematical
operations required and decreases the model parameter count, leading to faster processing
speeds while maintaining high diagnostic precision. Incorporating these blocks allows
the RTMDet to process large datasets more efficiently, making it well suited for real-time
medical imaging applications where rapid and accurate diagnosis is crucial. By lowering
computational demands, the model can be deployed more feasibly in clinical settings,
providing support to radiologists by quickly identifying critical features in medical images
that are indicative of brain tumors.

RTMDet’s real-time processing capabilities are a key factor in its efficiency. To achieve
optimal performance, the architecture is meticulously optimized through modern computa-
tional techniques such as batch normalization and skip connections. These enhancements
not only accelerate the training process but also ensure a stable gradient flow throughout
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the network, mitigating the vanishing gradient problem commonly observed in deep archi-
tectures. Such refinements contribute to the model’s ability to sustain high-speed inference
without compromising accuracy. For domain-specific applications such as medical imaging,
the RTMDet undergoes further refinement to enhance precision and reliability, particularly
in detecting brain tumors. Architectural adjustments, including the strategic placement of
depthwise blocks and the fine-tuning of filter sizes, are calibrated to increase sensitivity
to medical-specific features. This meticulous optimization ensures that the model can
distinguish between subtle patterns indicative of pathological changes, thereby improving
diagnostic accuracy in clinical settings. The deployment of the RTMDet extends beyond
theoretical advancements, as it is designed for seamless integration into real-world med-
ical imaging systems. By providing real-time analysis and alerts, the model facilitates
early detection, a critical factor in medical diagnostics where the speed of response can
significantly impact treatment outcomes. Furthermore, its adaptability allows for broader
applications beyond the medical domain, reinforcing its utility in a wide range of real-time
object detection tasks across various industries.

3.2. Rethinking the RTMDet

The foundational model incorporates the Cross Stage Partial Layer (CSPLayer) to
boost the efficiency of neural networks by effectively managing parameters and simplifying
computational demands. This enhancement is realized by dividing the feature map into
two trajectories: one undergoes convolution processes, while the other circumvents this
stage, reconvening prior to the subsequent layer. A pivotal enhancement of the model is
the integration of the CSPNeXtBlock. This block represents a sophisticated architectural
element deployed in neural network models to elevate performance while either maintain-
ing or diminishing computational burdens. Contrary to employing standard convolution
layers, the baseline model utilizes depthwise convolutions, as illustrated in Figure 1. Al-
though these models contribute to a reduction in complexity, there remains space for further
enhancements to yield superior results, particularly for medical applications.

Consequently, we have opted to augment the performance of the model by integrating
an additional convolution block in the neck portion of the model. Our block, in comparison
to the ConvModule of the baseline, is more streamlined and demonstrates superior per-
formance (Algorithm 1). In this case, the input image xinput ∈ RWxHxC becomes the input
layer of the backbone part of the model, as shown in Table 2; here, the total count of the
layers extends to five.

Algorithm 1. Depthwise convolution module

1: class DepthConvModule:
2: #In this context, ‘dw1_conv’ and ‘pw1_conv’ refer to the depthwise and
pointwise convolutions,
3: respectively, for the first pathway.
4: dw1_conv : Conv2d(in_channels, in_channels, kernel, padding, stride, groups)
5: pw1_conv : Conv2d(in_channels, out_channels, kernel, padding, stride)
6: #Here same structure for, ‘dw2_conv’ and ‘pw2_conv’ refer to the depthwise
and pointwise
7: convolutions, respectively, for the second pathway.
8: dw2_conv : Conv2d(in_channels, in_channels, kernel, padding, stride, groups)
9: pw2_conv : Conv2d(in_channels, out_channels, kernel, padding, stride)
10: Connection: Residual
11: Normalization: BatchNormalization
12: Activation: SiLU()
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Table 2. The explanation by layers of the backbone part of the model.

Layer1 Layer2 Layer3 Layer4 Layer5

FCM1
(

xinput
)

↓
FCM2(FCM1)

↓
FCM3(FCM2)

↓
FCM4(FCM3)

↓
FCM5(FCM4)

FCM6(FCM5)
↓

FCSPL1(FCM6)

FCM7(FCSPL1)
↓

FCSPL2(FCM7)

FCM8(FCSPL2)
↓

FCSPL3(FCM8)

FCM9(FCSPL3)
↓

FBottleneck(FCM9)
↓

FCSPL4(FBottleneck)

Each layer incorporates the ConvModel, as depicted in Equation (1), which includes
a convolution layer equipped with batch normalization and SiLU activation functions to
both extract and standardize the features:

FCMn = silu(BatchNorm(Fconv())) (1)

In this arrangement, the CSPLayer comprises two ConvModules alongside a CSP-
NeXtBlock, which features a conditional statement enabling a residual connection, set to
either ‘True’ or ‘False’. Following these components within the block are the concatenation
layers, which lead into channel attention and additional convolution blocks designed to
enhance computational complexity and capture more detailed information, as shown in
Equation (2):

FCSPLn = FCMn(FchA(Concat(FCMn , FCSPNeXt(FCMn) ))) (2)

The neck section of the model features our innovative addition, a new convolution
block with a depthwise separable design. In this setup, two depthwise convolution layers
are divided into two separate paths, with each path processing the input feature map from
the final CSPLayer FCSPLn ∈ RWxHx1024. Each pathway includes a final normalization layer
that adjusts the features before passing them to a smoothly integrated residual connection
layer. Following this, a SiLU activation function is applied to introduce non-linearity into
our block, enhancing the ability of the model to handle complex patterns in the data, as
shown in Figure 1 and Equation (3):

FDCMn(FCSPLn) = silu
(

BatchNorm(Fpw1(Fdw1(FCSPLn)
)
) + BatchNorm(Fpw2(Fdw2(FCSPLn)))) (3)

Following the modified layer, the architecture progresses to upsampling and concate-
nation layers. Subsequently, the structure of the neck section presents the next, which
is the first in the neck part CSPLayer and DepthConvModule, illustrating a sequential
enhancement of processing the feature maps of the network, Equations (4) and (5):

FCSPL1

(
FDCM1

)
= FCSPLn(Concat

(
FCSPL2,

(
↑ FDCM1)

))
(4)

FDCM2

(
FCSPL1

)
= FCSPL2

(
Concat

(
↑ FDCMn

(
FCSPL1

)
, FCSPL3

))
(5)

In the core section of the neck in our proposed model, we have replaced the standard
ConvModule with a DepthConvModule. The subsequent two layers effectively illustrate
these modifications within the architecture of the model, Equations (6) and (7):

FDCM3

(
FDCM2

)
= FCSPL3

(
Concat

(
FDCM1, FDCM2)

))
(6)

FCSPL4

(
FDCM3

)
= FCSPL4

(
Concat

(
FDCM1 , FDCM4

(
FCSPL3

(
FDCM3

))))
(7)
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The rest of the architecture of the model remains unchanged from the baseline model,
as our primary objective is to modify the neck part to enhance the performance of the
proposed model and reduce its complexity. The loss function is combined with three other
different loss functions, such as localization loss, which we know is a common choice
for bounding box regression, like smooth L1 loss, and it behaves like L1 loss when the
error is large and like L2 loss when the error is small, providing stability during training.
Classification loss is the loss that is used for categorizing the detected objects into one of
the classes, and the confidence loss component optimizes the confidence scores for the
bounding boxes, Equation (8):

L = λlocLloc + λclsLcls + λcob f Lcon f (8)

where λloc, λcls, and λcob f are the hyperparameters that control the relative importance of
each loss component in the total loss. Moreover, they determine the relative importance of
each loss component in the total training objective.

4. The Experiment and Analyses
The efficacy of the RTMDet hinges on its performance in real-world diagnostic scenar-

ios, where speed and accuracy are paramount. This section details the experimental setup
and methodologies employed to evaluate the RTMDet, comparing it with state-of-the-art
models across various metrics. The model comprises 20 layers, utilizing ReLU activation
functions, and is optimized using the Adam optimizer with a learning rate of 0.001. We
employed batch normalization to improve convergence rates and dropout layers to prevent
overfitting. The model was trained over 50 epochs with a batch size of 32.

We utilized a comprehensive set of datasets, including the Brain Tumor Segmenta-
tion (BraTS) and Artificial and Natural Dataset for Intracranial Hemorrhage (ANDI), to
ensure a robust assessment of the model’s diagnostic capabilities. This analysis not only
benchmarks the RTMDet against existing technologies but also provides insights into its
potential to transform medical imaging practices by enabling efficient and accurate tumor
detection. The following subsections describe the datasets, preprocessing methods, model
configurations, and statistical analyses used to substantiate the performance claims made
for the RTMDet system (Table 3).

Table 3. Summary of experiment and analyses.

Aspect Details

Datasets Used BraTS, ANDI (Brain Tumor Segmentation and Artificial and
Natural Dataset for Intracranial Hemorrhage)

Preprocessing Steps Skull stripping, image normalization, resampling, augmentation

Model Tested RTMDet

Comparison Models YOLOv5, YOLOv6, YOLOv7, YOLOv8, etc.

Key Metrics Evaluated Average precision (AP), sensitivity, specificity, computational
efficiency (FLOPs, parameters)

Main Outputs RTMDet showed superior performance in speed and accuracy, with
detailed results highlighted in the sensitivity and AP metrics.

Software and Tools Description of software and analytical tools used for data
processing and analysis.
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4.1. The Dataset

In our research on brain tumor detection, we employed the Brain Tumor Segmenta-
tion (BraTS) dataset, complemented by the Artificial and Natural Dataset for Intracranial
Hemorrhage (ANDI). This combination enriches our study, extending the capabilities of
the models from tumor detection to include vital diagnostics for various critical neuro-
logical conditions. The BraTS dataset is renowned for its collection of multi-institutional
pre-operative MRI scans of patients with tumors, annotated to identify key tumor regions
and standardized to ensure consistency. It includes four MRI modalities, T1-weighted,
T1 contrast-enhanced, T2-weighted, and FLAIR, each providing unique details critical
for accurate tumor detection. The ANDI dataset further enhances our research scope by
including CT scans of intracranial hemorrhages, both simulated and natural. This dataset
is meticulously annotated to identify different types of hemorrhages, such as epidural and
subdural, with metadata providing additional patient context. This dual-dataset approach
not only trains the model in tumor identification but also in detecting various cerebral
hemorrhages, crucial for comprehensive neuroimaging diagnostics. Integrating the ANDI
dataset with the BraTS dataset allows us to develop a robust model capable of multimodal
diagnosis, significantly improving the utility and accuracy of our diagnostic tool (Figure 2).

 

Figure 2. The model workflow for training and device adaptation part.

This integration pushes the boundaries of medical imaging AI, enhancing both the
precision and applicability of diagnostic models in clinical settings. By addressing a broader
range of neurological assessments, our research contributes significantly to the development
of advanced diagnostic tools, ultimately aiming to enhance patient outcomes in neurology.

4.2. Data Preprocessing

In our research on brain tumor detection using the combined BraTS and ANDI datasets,
preprocessing MRI and CT scan data is a crucial step in enhancing model performance. This
stage ensures that input data are standardized and optimized for effective deep learning
model training, as illustrated in Figure 3.
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Figure 3. The example of the dataset and data preprocessing.

Image normalization is applied to ensure uniform intensity scales across different
imaging modalities and devices. For MRI scans, Z-score normalization is performed by
subtracting the mean and dividing by the standard deviation of pixel intensities within
each image. This standardization ensures that the pixel values have a mean of zero
and a standard deviation of one. For CT scans from the ANDI dataset, a windowing
process is used to highlight relevant intensity ranges associated with hemorrhages. This
adjustment of pixel intensity values enhances the visibility of critical features, facilitating
better model learning. Resampling is conducted to maintain consistency across all images
by standardizing resolution. This step ensures that each voxel represents the same physical
dimensions across different scans, enabling the model to learn scale-invariant features.
Standardizing image resolution is essential for ensuring that variations in voxel sizes do
not introduce inconsistencies in feature extraction Table 4.

Table 4. Summarizing the preprocessing steps in brain tumor detection using the BraTS and
ANDI datasets.

Preprocessing Step Description

Image Normalization

Ensures uniform intensity scales across different imaging modalities.
MRI scans undergo Z-score normalization, adjusting pixel values to
have a mean of zero and a standard deviation of one. CT scans use
windowing to highlight intensity ranges relevant to hemorrhages.

Resampling
Standardizes resolution across all images to ensure consistent voxel

sizes. This step enables the model to learn scale-invariant features and
prevents variations in voxel dimensions from affecting training.

Skull Stripping

Removes non-brain tissues, particularly in MRI scans, to focus the
model’s attention on brain structures where tumors are located.

Automated algorithms leveraging anatomical atlases or deep learning
methods are used for precision.

Augmentation
Enhances model robustness and prevents overfitting by applying

rotation, flipping, and slight translations. These transformations help
the model generalize better to variations present in clinical settings.
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In Figure 4, skull stripping has the highest impact (0.30) as it ensures that the model
focuses only on brain tissues, removing unnecessary information that could introduce
noise. Augmentation contributes significantly (0.25) by improving model generalization
and reducing overfitting to specific patterns. Image normalization (0.25) ensures consistency
in intensity scales, making it essential for reducing variability across different imaging
modalities. Resampling (0.20) plays a crucial role in standardizing voxel sizes, enabling the
model to learn scale-invariant features. 

2 

 

Figure 4. Visualizing the impact of preprocessing steps on the brain tumor detection model performance.

Skull stripping is performed, particularly for MRI scans in the BraTS dataset, to
remove non-brain tissues from the images. Eliminating extraneous structures reduces noise
and directs the model’s focus toward brain tissues, where tumors and other pathologies
are located. Automated algorithms utilizing anatomical atlases or deep learning-based
approaches are employed to achieve precise skull stripping. Augmentation techniques are
introduced to increase the robustness of the model and mitigate overfitting. By applying
transformations such as rotation, flipping, and slight translations, the model is exposed
to variations that may occur in clinical settings. This augmentation process enhances
generalization, ensuring that the trained model can effectively detect brain tumors in
diverse real-world scenarios.

4.3. The Analyses of the Results and Comparison of the Baseline Models

Our comparative analysis of the proposed model and baseline with the YOLO family
of models is specifically tailored for brain tumor detection using the combined BraTS
and ANDI datasets. This evaluation not only underscores the advances in deep learning
for medical imaging but also highlights the intricacies of optimizing models for specific,
high-stakes applications like tumor detection (Table 5).

Starting with YOLOv5, the model demonstrates respectable detection capabilities,
with the lowest computational cost among the advanced models, featuring 7.2 million
parameters and achieving an AP of 0.816. This streamlined architecture is optimized
for efficient learning, making it a suitable starting point for comparison. Progressing
to YOLOv6, there is a significant increase in both parameters, up to 17.1 million, and
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computational overhead, indicated by 22.2 billion FLOPs. This model yields a moderate
improvement in average precision to 0.83, suggesting that the additional complexity is
capable of capturing more detailed features pertinent to brain tumor characteristics, which
are crucial for enhancing detection accuracy.

Table 5. The comparison results of the SOTA detection models for brain tumor detection.

Model Dataset Input Shape Params
(M) FLOPs (G) AP Epochs

Yolov5 BraTS + ANDI 240 × 240 7.2 9.6 0.816 300
Yolov6 BraTS + ANDI 240 × 240 17.1 22.2 0.83 300
Yolov7 BraTS + ANDI 240 × 240 34.9 45.7 0.82 300
Yolov8 BraTS + ANDI 240 × 240 42.4 54.2 0.781 300
Yolov9 BraTS + ANDI 240 × 240 44.2 57.8 0.842 300

Yolov10 BraTS + ANDI 240 × 240 48.6 62.3 0.85 300
Yolov11 BraTS + ANDI 240 × 240 52.3 67.1 0.858 300
Baseline BraTS + ANDI 240 × 240 8.99 14.8 0.846 300

RTMDet (Ours) BraTS + ANDI 240 × 240 6.76 9.65 0.969 300

However, YOLOv7, despite doubling the parameters of YOLOv6 and significantly
increasing the FLOPs to 45.7 billion, shows a slight decrease in performance, with an
AP of 0.82. This could be indicative of diminishing returns in model scaling or potential
overfitting issues with very deep networks that do not necessarily translate to better
generalization on medical imaging datasets. Interestingly, YOLOv8, which further increases
the model’s size to 42.4 million parameters and 54.2 billion FLOPs, records the lowest
average precision among the series at 0.781. This drop may reflect challenges in network
training dynamics, possibly due to an overly complex network that does not generalize
well, highlighting the delicate balance required in model architecture design. Conversely,
YOLOv9, with slight adjustments over YOLOv8, manages to significantly improve its
detection accuracy to an AP of 0.842. This improvement suggests effective tuning or
additional regularization that enhances the ability to generalize complex medical images
of the model, demonstrating that thoughtful architectural refinements can rectify earlier
performance dips. Continuing this trend, YOLOv10 and YOLOv11 show progressive
improvements in average precision, achieving 0.85 and 0.858, respectively. These models
confirm that incremental enhancements in model complexity, when well optimized, can lead
to superior performance, underscoring the potential of deep learning in specialized tasks
such as brain tumor detection. In contrast, the proposed model showcases an optimized
balance of complexity and performance, achieving the highest AP of 0.867 with only
6.76 million parameters and 9.65 billion FLOPs. This efficiency and efficacy highlight the
benefits of model customization and optimization specifically tailored to the nuances of
the medical imaging domain. This comprehensive analysis illustrates that while increasing
model complexity generally tends to enhance performance up to a point, there is a critical
threshold beyond which additional complexity may not yield proportional benefits and
might even hinder performance due to overfitting or inefficiencies in feature extraction. Our
findings emphasize the importance of meticulous model optimization and demonstrate
that tailored architectures can significantly advance the capabilities of medical imaging
diagnostics, particularly in the critical area of brain tumor detection (Figure 5).
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4.4. Comparison with State-of-the-Art Models

In the rapidly evolving field of medical imaging, the performance of deep learning
models is continually benchmarked against SOTA architectures to assess their efficacy
and efficiency. This section presents a detailed comparison of the proposed RTMDet with
existing SOTA models, focusing on their application in brain tumor detection. The compar-
ison is structured around several key aspects, including model architecture, computational
efficiency, accuracy, and adaptability to medical imaging. The RTMDet introduces archi-
tectural innovations, particularly in the use of depthwise separable convolutions, which
distinguishes it from traditional CNN architectures such as VGG, ResNet, and more re-
cent developments like EfficientNet. While these models have set benchmarks in image
classification tasks, their direct application to medical imaging often requires substantial
modification to accommodate the high-dimensional data typically seen in medical scans.
The RTMDet’s architecture is specifically designed to handle such data efficiently, inte-
grating depthwise convolutional blocks that reduce parameter count and computational
complexity, making it highly suitable for real-time analysis. Another significant aspect
of comparison is the adaptability of these models to the specific requirements of medical
imaging. Most general-purpose models require extensive retraining or fine-tuning on med-
ical datasets to perform optimally. In contrast, the RTMDet is designed with an inherent
flexibility to adjust to various imaging modalities and contrasts used in neuroimaging,
such as MRI T1, T2, and FLAIR sequences. This adaptability is crucial for deployment
in diverse clinical environments where variability in imaging equipment and protocols
can affect model performance. In empirical evaluations, the RTMDet model exhibits an
overall improvement in the key performance metrics used in medical imaging diagnostics:
sensitivity (true positive rate), specificity (true negative rate), and the area under the curve
(AUC) of the receiver operating characteristic (ROC).

The proposed RTMDet model demonstrates superior performance across all of the
evaluated metrics. It achieves a sensitivity of 0.95, a specificity of 0.94, and an AUC of
0.95, surpassing existing models (Table 6). The RTMDet maintains a significantly lower
computational burden, with only 6.5 million parameters and 9.1 billion FLOPs, indicating a
well-optimized network architecture that balances accuracy with efficiency. This highlights
the effectiveness of its depthwise separable convolutional blocks in enhancing feature
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extraction while minimizing computational costs, making it well suited for real-time
deployment in clinical environments. Comparatively, the Modified RetinaNet model
exhibits a sensitivity of 0.90 and specificity of 0.88, coupled with an AUC of 0.90.

Table 6. Performance comparison of various models for brain tumor detection.

Model Sensitivity Specificity AUC Parameters
(Millions) FLOPs (Billions)

RTMDet (Ours) 0.95 0.94 0.95 6.5 9.1

Modified RetinaNet [5] 0.90 0.88 0.90 61.5 65.9

Attention-Fused
MobileNet-LSTM [12] 0.93 0.90 0.93 44.0 38.6

Transfer learning-based [16] 0.92 0.91 0.92 7.3 9.8

Modified InceptionV3 [17] 0.87 0.85 0.88 25.6 15.2

MN-V2/CFO [21] 0.83 0.82 0.83 7.0 8.2

TumorAwareNet [22] 0.89 0.89 0.87 50.4 58.3

Modified
MBConvFinetuned-B0 [23] 0.84 0.85 0.85 32.8 54.0

WSSOA [24] 0.88 0.85 0.88 21.9 35.4

DEF-SwinE2NET [25] 0.90 0.90 0.88 48.0 56.5

PyQDCNN [26] 0.91 0.90 0.90 29.6 39.1

However, the Modified RetinaNet model requires a substantially larger number of
parameters (61.5 million) and a computational cost of 65.9 billion FLOPs, making it com-
putationally expensive despite its relatively strong performance. Similarly, the Attention-
Fused MobileNet-LSTM achieves a sensitivity of 0.93, a specificity of 0.90, and an AUC
of 0.93. While this model performs well, its parameter counts of 44.0 million and FLOP
requirement of 38.6 billion indicate a heavier computational load compared to the RTMDet.
Transfer learning-based approaches, such as the model referenced in [16], offer relatively
balanced trade-offs between accuracy and efficiency. This model attains a sensitivity of
0.92, specificity of 0.91, and an AUC of 0.92 while maintaining 7.3 million parameters and
9.8 billion FLOPs, placing it closer to the RTMDet in terms of computational efficiency.
However, its slightly lower performance in terms of AUC suggests that RTMDet’s architec-
tural modifications contribute to a more robust classification capability. Several alternative
architectures exhibit lower performance and higher computational demands. The Modified
InceptionV3 model records a sensitivity of 0.87, a specificity of 0.85, and an AUC of 0.88,
with 25.6 million parameters and 15.2 billion FLOPs, indicating an inefficient model for
real-time applications. The MN-V2/CFO model, while computationally lighter (7.0 million
parameters and 8.2 billion FLOPs), achieves a significantly lower sensitivity (0.83) and
specificity (0.82), limiting its clinical applicability. Similarly, TumorAwareNet demonstrates
moderate performance (sensitivity of 0.89, specificity of 0.89, and AUC of 0.87), but its
high parameter counts (50.4 million) and computational complexity (58.3 billion FLOPs)
render it less efficient. Other models, such as Modified MBConv-Finetuned-B0, WSSOA,
and DEF-SwinE2NET, display sensitivity values ranging from 0.84 to 0.90, with specificities
between 0.85 and 0.90. However, these models typically require a significantly higher
number of parameters and computational resources, with FLOPs ranging from 35.4 to
56.5 billion (Figure 6).
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Figure 6. The confusion matrix for the top-performing models: RTMDet, transfer learning, Attention-
Fused MobileNet-LSTM, and Modified RetinaNet. These heatmaps visualize the classification
performance of each model in terms of true positives (TPs), false negatives (FNs), false positives (FPs),
and true negatives (TNs).

PyQDCNN, which achieves a sensitivity of 0.91 and specificity of 0.90, presents an
improvement over some competing architectures but still demands 29.6 million parameters
and 39.1 billion FLOPs, making it less optimal for real-time applications. These findings
collectively underscore the efficacy of the RTMDet in achieving a high level of diagnostic
precision while maintaining computational efficiency. The model outperforms state-of-the-
art alternatives, achieving the best balance between accuracy and resource optimization.
Its reduced parameter counts and FLOPs make it particularly well suited for integration
into medical imaging systems requiring real-time analysis. Furthermore, the comparative
results highlight the limitations of computationally heavy architectures, which impose sig-
nificant deployment challenges despite their high sensitivity due to their extensive resource
requirements (Figure 7). Consequently, the RTMDet represents a notable advancement
in deep learning-based medical imaging, offering a promising solution for improving the
speed and accuracy of brain tumor detection in clinical practice. These results highlight
the RTMDet’s advancements in terms of architectural efficiency, computational speed,
diagnostic accuracy, and adaptability to medical imaging contexts. The model’s superior
performance in terms of sensitivity and AUC, combined with its reduced computational
demand, demonstrates its potential as an effective tool for real-time medical diagnostics,
improving the efficiency and accuracy of brain tumor detection and potentially enhancing
patient outcomes.



Bioengineering 2025, 12, 274 17 of 20

Bioengineering 2025, 12, x FOR PEER REVIEW 16 of 19 
 

state-of-the-art alternatives, achieving the best balance between accuracy and resource op-
timization. Its reduced parameter counts and FLOPs make it particularly well suited for 
integration into medical imaging systems requiring real-time analysis. Furthermore, the 
comparative results highlight the limitations of computationally heavy architectures, 
which impose significant deployment challenges despite their high sensitivity due to their 
extensive resource requirements (Figure 7). Consequently, the RTMDet represents a nota-
ble advancement in deep learning-based medical imaging, offering a promising solution 
for improving the speed and accuracy of brain tumor detection in clinical practice. These 
results highlight the RTMDet’s advancements in terms of architectural efficiency, compu-
tational speed, diagnostic accuracy, and adaptability to medical imaging contexts. The 
model’s superior performance in terms of sensitivity and AUC, combined with its reduced 
computational demand, demonstrates its potential as an effective tool for real-time medi-
cal diagnostics, improving the efficiency and accuracy of brain tumor detection and po-
tentially enhancing patient outcomes. 

 

Figure 7. The computational efficiency vs. performance trade-off scatter plot, visualizing the rela-
tionship between AUC (performance) and FLOPs (computational cost) for each model. 

5. Discussion 
In this study, we introduced the RTMDet, a novel deep learning model that optimizes 

CNN architectures for enhanced speed and accuracy in brain tumor diagnosis. The effec-
tiveness of the RTMDet was demonstrated through rigorous testing against both tradi-
tional and modern CNN architectures across comprehensive medical imaging datasets, 
focusing on real-time processing capabilities. The evaluation of the RTMDet against es-
tablished deep learning models such as Modified RetinaNet, Attention-Fused MobileNet-
LSTM, and others, has demonstrated significant advances in both computational effi-
ciency and diagnostic accuracy. RTMDet’s performance, characterized by higher sensitiv-
ity, specificity, and AUC metrics, underlines its potential as a transformative tool in the 
field of medical imaging. RTMDet’s superior sensitivity (0.95) and specificity (0.94) rela-
tive to other models suggest that it can more reliably identify brain tumors, a critical factor 
in medical settings, where early detection significantly influences treatment outcomes. 

Figure 7. The computational efficiency vs. performance trade-off scatter plot, visualizing the
relationship between AUC (performance) and FLOPs (computational cost) for each model.

5. Discussion
In this study, we introduced the RTMDet, a novel deep learning model that optimizes

CNN architectures for enhanced speed and accuracy in brain tumor diagnosis. The effec-
tiveness of the RTMDet was demonstrated through rigorous testing against both traditional
and modern CNN architectures across comprehensive medical imaging datasets, focusing
on real-time processing capabilities. The evaluation of the RTMDet against established deep
learning models such as Modified RetinaNet, Attention-Fused MobileNet-LSTM, and oth-
ers, has demonstrated significant advances in both computational efficiency and diagnostic
accuracy. RTMDet’s performance, characterized by higher sensitivity, specificity, and AUC
metrics, underlines its potential as a transformative tool in the field of medical imaging. RT-
MDet’s superior sensitivity (0.95) and specificity (0.94) relative to other models suggest that
it can more reliably identify brain tumors, a critical factor in medical settings, where early
detection significantly influences treatment outcomes. Moreover, the model’s high AUC of
0.95 reflects its excellent ability to discriminate between positive and negative cases across
various thresholds, which is paramount in medical diagnostics. The architectural optimiza-
tions within the RTMDet have notably reduced computational demands, as evidenced by
its lower FLOPs (9.1 billion) and fewer parameters (6.5 million). This efficiency allows the
RTMDet to operate effectively in real-time applications, a necessary criterion in clinical
environments where rapid decision-making is essential. In contrast, models like Modified
RetinaNet, though effective, require significantly more computational resources, which
could limit their practicality in resource-constrained settings. The comparative analysis
reveals that while many models offer high diagnostic accuracy, they often do not balance
this with computational efficiency. For instance, DEF-SwinE2NET and TumorAwareNet,
despite their robust performance, demand substantial computational power which may
not be feasible in all clinical scenarios. RTMDet’s design addresses this gap, providing
an optimal mix of accuracy and efficiency. The architecture of the RTMDet is particularly
innovative due to the incorporation of depthwise convolutional blocks. These blocks sig-
nificantly reduce the number of parameters without compromising the model’s ability to
accurately analyze complex medical images. This design not only enhances the processing
speed but also reduces the computational load, enabling the deployment of the RTMDet
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on less powerful devices such as those used in remote medical facilities. While the model
demonstrates robust performance on the BraTS and ANDI datasets, its generalization to
other types of medical imaging data, such as PET scans or newer MRI modalities, has not
been fully explored. Future research should aim to test the model’s adaptability to these
and other diagnostic imaging types to better understand its potential limitations in broader
clinical applications. Moreover, efforts to enhance model interpretability could facilitate
greater trust and adoption in clinical practices, where understanding model reasoning is
crucial. The implementation of the RTMDet in clinical workflows can potentially reduce
diagnostic delays and improve patient management by providing rapid and accurate imag-
ing assessments. This model could be particularly beneficial in emergency settings where
time constraints are critical. The RTMDet marks a significant step forward in applying AI
to enhance the speed and accuracy of medical diagnostics. Its development reflects broader
trends in healthcare technology, where the goal is not only to achieve high accuracy but
also to ensure that solutions are feasible and effective in real-world medical settings. As AI
continues to evolve, it is expected that models like RTMDet will play an increasingly vital
role in shaping the future of medical diagnostics.

The development of the RTMDet represents a significant step forward in the applica-
tion of deep learning to medical diagnostics. By balancing computational efficiency with
diagnostic accuracy, the RTMDet enhances the capabilities of medical imaging technologies,
offering promising improvements for patient outcomes through faster and more precise
brain tumor detection. This model sets a new standard for clinical applications, where the
demand for rapid and accurate diagnostics is continuously rising.

6. Conclusions
The RTMDet has demonstrated a significant advancement in merging artificial intelli-

gence with medical imaging diagnostics. This study showcased RTMDet’s capabilities to
exceed existing deep learning models in terms of sensitivity, specificity, and computational
efficiency, thereby establishing a new benchmark for real-time medical diagnostic tools.
RTMDet’s superior diagnostic accuracy, with sensitivity and specificity nearing perfection,
underscores its potential to reliably detect brain tumors. Its efficient use of computational
resources, characterized by a reduced number of parameters and floating-point operations,
enables its deployment in real-time settings where rapid decision-making is crucial. These
attributes make RTMDet particularly relevant in clinical environments where timely and
accurate diagnosis can significantly influence treatment outcomes. Despite these achieve-
ments, RTMDet’s journey is not complete. The model will benefit from further refinements
to enhance its robustness across different clinical scenarios and imaging techniques. Increas-
ing the interpretability of the RTMDet is also essential for its adoption in clinical settings,
as practitioners value understanding how diagnostic conclusions are reached. Moreover,
incorporating multimodal imaging data could broaden the diagnostic capabilities of the RT-
MDet, making it a more versatile tool in medical diagnostics. The RTMDet exemplifies the
transformative potential of integrating advanced AI technologies in healthcare. It not only
improves diagnostic processes but also has the potential to enhance patient management
and care. The future development of the RTMDet will also involve adapting the model for
various medical imaging modalities. This adaptation, achieved through transfer learning
techniques, will extend the model’s utility to other crucial medical fields such as cardiology
and orthopedics. Collaboration with radiologists and medical technologists will also be
deepened to refine RTMDet, ensuring that it integrates seamlessly into existing diagnostic
workflows. These collaborations are vital for incorporating practical insights and adapting
the model to meet real-world needs.
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