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Abstract: Medical imaging and deep learning models are essential to the early identification and
diagnosis of brain cancers, facilitating timely intervention and improving patient outcomes. This
research paper investigates the integration of YOLOv5, a state-of-the-art object detection framework,
with non-local neural networks (NLNNs) to improve brain tumor detection’s robustness and accuracy.
This study begins by curating a comprehensive dataset comprising brain MRI scans from various
sources. To facilitate effective fusion, the YOLOv5 and NLNNs, K-means+, and spatial pyramid
pooling fast+ (SPPF+) modules are integrated within a unified framework. The brain tumor dataset is
used to refine the YOLOv5 model through the application of transfer learning techniques, adapting it
specifically to the task of tumor detection. The results indicate that the combination of YOLOv5 and
other modules results in enhanced detection capabilities in comparison to the utilization of YOLOv5
exclusively, proving recall rates of 86% and 83% respectively. Moreover, the research explores the
interpretability aspect of the combined model. By visualizing the attention maps generated by the
NLNNs module, the regions of interest associated with tumor presence are highlighted, aiding in the
understanding and validation of the decision-making procedure of the methodology. Additionally,
the impact of hyperparameters, such as NLNNs kernel size, fusion strategy, and training data
augmentation, is investigated to optimize the performance of the combined model.

Keywords: YOLOv5; non-local neural networks; brain tumor; MRI; segmentation; object detection;
deep learning

1. Introduction

Brain tumors represent a considerable global health issue, presenting a significant
danger to individuals across various age groups [1]. These anomalous cell proliferations
within the brain have the potential to result in severe health implications and, in certain
instances, can lead to fatality. Timely identification and precise diagnosis of brain tumors
play a pivotal role in ensuring effective therapeutic interventions and better prognoses for
patients [2]. Recent progress in medical imaging tools and computational methodologies
has facilitated the emergence of computer-assisted detection systems designed to aid
healthcare practitioners in the recognition and precise localization of brain cancers [3].

Conventional approaches to the identification of brain malignancies and gliomas
traditionally depended on the manual interpretation of medical imaging modalities, notably
magnetic resonance imaging (MRI) and computed tomography (CT) scans [4]. Nonetheless,
the subjective nature inherent in visual analysis and the intricacies associated with tumor
identification frequently presented challenges for radiologists, thereby contributing to the

Bioengineering 2024, 11, 627. https://doi.org/10.3390/bioengineering11060627 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11060627
https://doi.org/10.3390/bioengineering11060627
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-5923-8695
https://orcid.org/0000-0002-3940-0154
https://orcid.org/0000-0003-0184-7599
https://doi.org/10.3390/bioengineering11060627
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11060627?type=check_update&version=1


Bioengineering 2024, 11, 627 2 of 23

risk of misdiagnosis or delayed commencement of treatment. Consequently, a heightened
interest has emerged in harnessing the capabilities of artificial intelligence (AI) and machine
learning techniques to augment the precision and efficiency of brain tumor detection [5].

AI has exhibited remarkable promise across diverse domains, encompassing the
examination of medical imaging. Deep learning (DL) frameworks, similar to convolutional
neural networks or other AI approaches, have showcased exceptional abilities in discerning
patterns, extracting features, and executing classification tasks. Leveraging these models,
particularly in processing extensive datasets of medical images, enables efficient learning
of intricate representations, empowering them to differentiate between healthy brain tissue
and areas affected by tumors [6].

Transfer learning, a DL technique, has gained significance in the realm of medical
imaging [7]. This method capitalizes on pre-trained models using extensive datasets,
enabling researchers to commence their models with acquired features and tailor them to
particular tasks using smaller datasets. This approach not only expedites the training phase
but also amplifies the models’ capacity for generalization and performance.

Deep learning methods have made impressive progress in a variety of computer vision
applications in recent years, most notably on the object detection area. Among these models,
YOLOv5 (You Only Look Once) has garnered considerable acclaim owing to its speed and
precision in object detection applications. Our objective revolves around harnessing the
capabilities of the YOLOv5 model to investigate its potential in accurately and efficiently
detecting brain tumors within MRI scans [8].

Beyond the utilization of the YOLOv5 model, our approach incorporates non-local
neural networks (NLNNs) to augment the efficacy of brain tumor detection [9]. NLNNs,
belonging to a category of deep neural networks, excel in grasping extensive contextual
connections within images, facilitating the extraction of contextual information and en-
hancing predictive accuracy. Introducing NLNNs into our detection framework aims to
harness their capacity in modeling spatial correlations and capturing comprehensive global
context. This integration proves particularly advantageous in discerning nuanced tumor
characteristics and effectively distinguishing them from healthy brain tissue.

The fusion of YOLOv5 and NLNNs presents a promising avenue for achieving height-
ened accuracy and resilience in brain tumor detection [10]. The YOLOv5 model’s adeptness
in precise object detection and localization, coupled with NLNNs’ proficiency in capturing
intricate details and contextual nuances, stands to bolster overall detection performance.
This research endeavors to scrutinize the efficacy of this amalgamated methodology and
appraise its capability to elevate the precision in identifying brain tumors [11].

This study aims to construct a deep learning framework by integrating YOLOv5 and
NLNNs for the detection of brain tumors within MRI scans. The primary objectives involve
the development and evaluation of this framework using an extensive dataset containing
annotated brain MRI images. The methodology includes training and refining the YOLOv5
model on the dataset while leveraging NLNNs to augment its functionalities [12]. The
assessment will encompass an evaluation of detection accuracy, precision, and computa-
tional efficiency of the proposed framework, followed by a comparative analysis against
established methods in the field.

This research makes significant contributions by conducting a comprehensive ex-
amination of the YOLOv5 model and NLNNs concerning their efficacy in brain tumor
detection. Through rigorous evaluation on a sizable dataset, this study offers insights
into the amalgamation of these models, showcasing their potential to elevate detection
accuracy [13]. The implications of these findings are poised to propel advancements in
brain tumor detection, potentially guiding the development of automated systems capable
of aiding medical professionals in more efficient brain tumor diagnoses.

Our proposal introduces a brain tumor detection system built upon an improved
YOLOv5 model [14] designed to address the aforementioned limitations. For tumor identi-
fication within MRI images, a foundational framework pre-trained on the common objects
in context (COCO) dataset was utilized. Pre-trained weights were used as the backbone
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network’s initialization parameters in order to optimize the network structure parameters
and strengthen the original network. This study drew inspiration from our prior research
outcomes [15]. Sections 3 and 4 delineate our efforts to enhance the performance of the
conventional YOLOv5 network, facilitating swift brain tumor detection, with subsequent
validation on AI mainframes.

The main achievements of this study involve creating an automated system for de-
tecting brain tumors with reduced false-positive results. A substantial brain tumor MRI
dataset was curated, significantly enhancing the precision of the deep convolutional neural
network model. Refinements in anchor-box clustering via the K-means+ technique were im-
plemented to mitigate misclassifications. The optimization of the spatial pyramid pooling
fast (SPPF) layer within the backbone aimed to specifically target smaller features, while
adjustments in the neck part utilizing the bidirectional feature pyramid network (Bi-FPN)
module were executed to ensure effective fusion of multi-scale features. Lastly, improve-
ments in the system design, accurate detection rate, and speed were achieved through the
application of network pruning and transfer learning methodologies during training.

The following sections of this manuscript are organized in the following manner:
Section 2 furnishes a comprehensive review of pertinent literature about the identification
of brain cancer and the utilization of AI methodologies. Section 3 expounds on the method-
ology employed, encompassing details on the YOLOv5 model, NLNNs, and the dataset
under consideration for this study. Section 4 delineates the outcomes of our experiments
and provides an assessment of the system’s performance. In conclusion, Section 5 summa-
rizes key findings, draws conclusions, and delineates potential avenues for future research
in this domain.

2. Related Works

Combining several imaging methods with deep learning (DL) models has significantly
advanced computer-aided diagnosis (CAD) systems for distinguishing brain malignancies
that are pituitary, meningioma, and glioma. Cheng et al. conducted a noteworthy study
leveraging Content-based Image Retrieval (CBIR) techniques alongside a powerful database
comprising 3064 T1-weighted contrast-enhanced (CE) MRI pictures for extracting brain
tumors. Their innovative framework incorporated adaptive spatial division, segmenting
tumor regions into subregions based on intensities. Utilizing the Fisher mask to amalga-
mate these areas and generate a picture-level signature resulted in an impressive Mean
Average Precision (mAP) of 94.68%. This research has spurred further exploration into the
potential of DL methods for the categorization of these three kinds of MRI-diagnosed brain
tumors [14].

In a notable research endeavor by Swati et al., a pre-trained deep convolutional
neural network (DCNN) named VGG19 was employed, utilizing transfer learning to
harness crucial characteristics for image identification [15]. Through fine-tuning the VGG19
model, accurate classification of brain tumor images was accomplished, reaching a 94.82%
categorization correctness. Likewise, Deepak et al. adopted transfer learning with another
pre-trained DCNN, GoogleNet, implementing a patient-level five-fold cross-validation
approach. Their research yielded an impressive accuracy of 98% in classifying the three
distinct brain tumors [16].

Rehman et al. utilized computer vision methodologies to magnify their database,
thereby enhancing the efficacy of their model [17]. Employing diverse affine transforma-
tions on image samples facilitated the extraction of supplementary features by their chosen
DCNN models (specifically, AlexNet, GoogleNet, and VGG16). Researcher’s categorizer
demonstrated predictions rate of 96.98%, 97.76%, and 97.14%, accordingly. In a separate
study, Sultan et al. introduced a tailored CNN model designed for the multi-class classifica-
tion of brain tumors. This architecture incorporated activation functions, normalization
techniques, pooling layers, and dropout mechanisms to counter overfitting. Remarkably,
exceeding current state-of-the-art approaches, their model attained an outstanding accuracy
rate of 97.7% [18].
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Noreen et al. recently introduced more advanced DCNN models, DenseNet201 and
InceptionV3, in a study focused on brain tumor diagnosis [19]. Their methodology involved
a concatenated multi-stage feature extraction process tailored for tumor analysis, resulting
in remarkable accuracies of 99.34% for InceptionV3 and 99.51% for DenseNet201. In a
related context, Bhanothu et al. utilized the Faster R-CNN object detection approach to
identify brain tumor locations within MRI scans, utilizing bounding boxes for identification
purposes [20]. Despite the promise of DCNN item recognition model, Faster R-CNN
encountered hurdles at this nascent stage and achieved a modest mean average precision
(mAP) of only 77.60%.

The studies discussed above collectively showcase substantial progress in brain tumor
diagnosis, particularly in the realms of classification and manually crafted segmentation
techniques [21]. Although the evolution of object detection methodologies within DCNNs
is ongoing, recent strides highlight encouraging prospects for enhanced outcomes in this
domain (Table 1).

Table 1. An overview of various algorithms used in the diagnosis of brain tumors.

Author Model Approach Performance Year

Cheng
Almahfud et al.

Pereira S

Novel-segmentation
model

K-means and FCM-clustering
CNN-based

Segmentation
Segmentation
Segmentation

mAP of 94.68%
Accuracy of 91.94%

DSC 88%

2016
2018
2016

Bhanothu Faster R-CNN Detection mAP 77.60% 2020

Swati VGG19 Classification Accuracy of 94.82% 2019

Deepak GoogleNet Classification Accuracy of 98% 2019

Rehman AlexNet, GoogleNet, VGG16 Classification
Accuracies of 97.39%,

98.04%, and
98.69%, respectively

2019

Sultan Custom-CNN Classification Accuracy of 98.7% 2019

Noreen DenseNet201 and
InceptionV3 Classification Accuracies of 99.34%

and 99.51% 2020

Al-Masni conducted a study utilizing the “You Only Look Once” (YOLO) detection
model to simultaneously identify breast masses across multiple digital mammograms.
Diverging from algorithms targeting specific patches or regions, YOLO examined the entire
input image throughout both testing and training stages. That strategy conferred a notable
velocity benefit and diminished overhead in contrast to region-centric techniques such as
Fast R-CNN and the conventional window-sliding method. Their investigation highlighted
YOLO’s capacity to augment computer-aided diagnosis (CAD) by reliably detecting masses
with a precision rate of 98.8%.

Ünver et al. supervised a study underscoring the efficacy of YOLO in the realm of
medical imaging [22]. Employing a YOLOv3 model trained with 2000 annotated images,
they focused on identifying skin lesions without employing any augmentation techniques.
Through the integration of the GrabCut segmentation algorithm, their approach attained
an accuracy rate of 93.39% when validated against 500 images, surpassing the perfor-
mance of alternative models like ResNet and U-Net. The findings of the study emphasize
the potential of YOLO to significantly contribute to tackling diverse challenges within
medical imaging.

Previously, YOLO models encountered challenges due to high computational de-
mands and moderate performance, limiting their viability for future applications and
deployment. Consequently, the use of them in medical imaging was the subject of very
little research. However, recent strides in YOLOv3 and the introduction of YOLOv4 have
significantly enhanced object detection capabilities compared to alternative solutions, all
while maintaining lower resource requirements. Therefore, this research aims to evaluate
how well the modified YOLOv4 model performs in terms of training an automated CAD
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recognition technique that is specifically designed to identify brain malignancies of the
pituitary, glioma, and meningioma.

The objective is to aid medical professionals in the diagnostic process by utilizing a
streamlined YOLOv4 model, consuming fewer computational resources and disk space.
This feature facilitates its deployment across diverse platforms. Considering insights from
prior studies employing YOLO in medical imaging, there remains potential for refinement
in automating the detection of MRI scans showing brain malignancies. As of the present
time, no studies have utilized a finely tuned YOLO-based model employing transfer
learning model for MRI brain cancer identification. This underscores the necessity to assess
its overall precision, indicating an unexplored avenue for enhancing automated brain
tumor detection in medical imaging.

When applying AI techniques to improve the accuracy of automated brain tumor
diagnosis in healthcare settings, several technical shortcomings frequently call for the de-
velopment of better procedures. The primary technical deficiencies that frequently occur in
this field are listed below, and they inspired the design of the suggested technique. Limited
dataset size and diversity are the main issues of all healthcare research such as brain tumor
detection. Due to their limited size and lack of diversity, many of the datasets currently
in use for training AI models might cause overfitting and poor generalization to new
data. To increase the robustness and generalizability of the AI models, data augmentation
techniques and the aggregation of larger, more diverse datasets from numerous sources
are used. In addition, inconsistent data quality, insufficient model interpretability, class
imbalance in datasets, and limited integration with clinical workflows are also key technical
gaps that commonly arise in this domain.

3. Materials and Methods
3.1. The Proposed Model for Detecting Brain Tumors in MRI Scans

Detecting brain tumors within medical images poses a formidable challenge due
to the diverse characteristics present in tumors, including variations in size, shape, and
location [23]. Numerous methodologies have emerged to tackle this challenge, each with
distinct strengths and limitations. However, to fairly evaluate these methods, the presence
of a benchmark dataset becomes imperative, allowing for the comprehensive assessment of
their efficacy [24].

Moreover, brain tumor images exhibit varying quality, influenced by factors such as
sharpness, contrast, the number of slices, and pixel spacing. In our paper, we introduce
the technical intricacies and architectural framework of our proposed system, specifically
designed to facilitate swift and precise detection of brain tumors in medical images. This
system aims to address the complexities posed by diverse tumor characteristics and image
quality variations, enabling efficient and accurate tumor detection within this critical
medical domain.

Past investigations have explored diverse methodologies for the detection and char-
acterization of brain tumors, but the successful application of these approaches has been
limited to a select number of studies, resulting in inconsistent outcomes. Our primary
objective is to achieve precise detection of brain tumors in MRI scans. Following a com-
prehensive evaluation of various models, we opted for the YOLOv5 model, known for its
effectiveness in detecting brain tumors.

However, faced with the challenge of insufficient training data, we initially pre-trained
the YOLOv5 model using the COCO dataset to acquire foundational image recognition fea-
tures. Nevertheless, the transfer of pre-trained features and hyperparameter settings from
COCO presented challenges in accurately identifying brain tumors in MRI images. Conse-
quently, we undertook a process of fine-tuning and refinement of the model, specifically
tailoring it for the nuanced problem of identifying brain tumors. This iterative refinement
aims to improve the functioning of the model and ensure its suitability to explain the
subtleties of using MRI scans to diagnose brain tumors.
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In pursuit of our goal, we initiated the YOLOv5 model with weights derived from the
COCO dataset and proceeded to conduct additional training using a specifically labeled
dataset comprising MRI brain tumor images. This training process entailed the refinement
of deep learning algorithms, adjustment of hyperparameters, and implementation of
transfer learning techniques [25]. The overarching objective was to minimize overall loss
and maximize accuracy, necessitating the careful selection of an appropriate optimizer to
fine-tune the neural network’s biases and learning rate.

The choice of optimizer is pivotal in ensuring the effective training of the model. In this
study, researchers employed the binary cross-entropy loss function coupled with the Adam
optimizer [26]. This combination was chosen to facilitate the optimization process, aiming
to strike a balance between minimizing the loss function and enhancing the accuracy of the
YOLOv5 model for the specific task of brain tumor.

As a result of these endeavors, we successfully crafted a YOLOv5 model with the
capacity to accurately discern MRI frames featuring meningioma, glioma, and pituitary
tumors. The integration of fine-tuning and transfer learning techniques significantly
bolstered the model’s proficiency in identifying brain cancers, leading to enhanced accuracy.
The optimized model has demonstrated promising outcomes in the realm of brain tumor
detection tasks, as documented in our study [27].

Brain tumors represent abnormal cell growth within the brain, classified as either
benign (noncancerous) or malignant (cancerous) formations [28]. Primary brain tumors
originate within the brain itself, while secondary brain tumors manifest when cancerous
cells metastasize to the brain from other bodily regions. There are many different kinds of
primary brain tumors, including meningiomas, gliomas, craniopharyngiomas, pituitary
adenomas, medulloblastomas, and germ cell tumors [29]. Each subtype displays unique
characteristics in terms of growth patterns, affected brain areas, and clinical implications.

3.2. Data Preparation

The dataset employed in this study was acquired from Cheng et al., who gathered MRI
scans from Nanfang Hospital in Guangzhou, China, spanning the years 2005 to 2010 [30].
The dataset’s particulars, delineated in Table 2, include specifications such as the inclusion
of 2D slices of T1-weighted contrast-enhanced MRI images. This dataset encompasses a
collective count of 708 instances of meningioma, 1426 instances of glioma, and 930 instances
of pituitary brain tumors.

Table 2. The MRI brain tumor dataset specifications.

Class Coronal Axial Sagittal Total
Meningioma 232 208 268 708

Glioma 493 494 439 1426
Pituitary 321 291 318 930

Total 1046 993 1025 3064

Figure 1 shows a curated selection of samples from each class in the dataset, featuring
diverse perspectives such as axial, coronal, and sagittal views. According to the primary
data source, these samples were taken from 233 anonymized patients and carefully curated
and validated by a skilled radiologist. The images presented in the table adhere to a stan-
dard dimension scale of 512 × 512 and possess a pixel size of 49 × 49 mm. Initially stored
in the MAT format, these frames underwent image processing techniques for requisite
adjustments. To ensure compatibility with the YOLO model and facilitate accessibility, all
images were subsequently converted to the JPG format, representing them as 2D arrays.
Furthermore, in order to get rid of any potential inconsistencies during further model
testing, pixel intensities were normalized using the min–max method.

In order to streamline the training and testing procedures, the comprehensive dataset
underwent a stratified division into two subsets: a training set and a testing set [31]. This
partitioning was executed based on a specific MRI view and class, as delineated in Table 3.
The rationale behind this approach was to evaluate the model’s efficacy in accurately
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detecting tumors within the test data, which constituted 20% of the entire dataset. The
remaining 80% of the dataset was allocated to furnish a sufficiently large pool of learnable
patterns for training the models.
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Table 3. Distribution of datasets for testing and training.

Class Train Test Total
Meningioma 565 140 705

Glioma 1140 280 1420
Pituitary 740 180 920

Total 2450 610 3060

Furthermore, to uphold impartiality and eliminate potential biases, the selection of
samples for both sets adhered to a random and unbiased methodology, devoid of any
predetermined choices. This procedural rigor aimed to forestall any unwarranted outcomes
or preconceived results, thus contributing to the overall reliability of this study.

The database underwent partitioning into distinct training and testing sets based on
MRI view and class, facilitating impartial model assessment. Consequently, the model’s
effectiveness can be evaluated on previously unseen data, owing to this segregation. This
approach serves to gauge methods’ adaptability and proficiency in brain cancer detection
by subjecting them to testing on data not utilized during training. The selection of testing
set samples is conducted impartially through stochastic collection, thereby mitigating any
potential biases or selection biases. Such measures preclude the introduction of biases that
could skew evaluation outcomes in favor of specific models or assumptions.

3.3. Data Preprocessing

In the analysis and detection of brain tumors, preprocessing of brain cancer pictures
stands as a pivotal phase [32]. This section delineates the preprocessing techniques em-
ployed on the brain tumor image dataset to ensure the attainment of precise and dependable
outcomes. Figure 2 visually represents the manual labeling process carried out on the im-
ages within the dataset. The figure illustrates the sequential steps involved in manually
annotating and labeling the images, highlighting the meticulous method of precisely lo-
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cating and labeling each image’s regions of interest. This step ensured that subsequent
analysis focused specifically on the tumor and its surrounding structures [33].

Bioengineering 2024, 11, x FOR PEER REVIEW 9 of 24 
 

 
Figure 2. The preprocessing of the brain tumor images dataset [33]. 

Through the application of these preprocessing approaches to the brain tumor image 
dataset, several enhancements were achieved. Standardization of the images occurred, re-
ducing noise while simultaneously amplifying critical features [44]. This comprehensive 
preprocessing pipeline ensured the dataset was suitably primed for subsequent analysis, 
significantly aiding in the precise identification and characterization of brain tumors. 

3.4. The Architecture of YOLOv5 
The YOLOv5 object detection framework, known for its real-time, one-stage capabil-

ities, stands out as an appropriate option for our requirements due to its fast inference 
speed and superior object identification accuracy [45]. Thanks to the continued work of 
its developers, YOLO has established itself as a highly effective solution for object detec-
tion across Pascal VOC as well as the Microsoft COCO datasets. The four main variants 
of YOLOv5 are the benchmark YOLOv5l, the extended YOLOv5x, and the simplified pre-
set versions, YOLOv5s and YOLOv5m. The number of feature extraction modules and 
convolution kernels installed at various network nodes, which leads to decreased overall 
model sizes and parameter counts, is the main difference between these network types. 

Figure 3 provides an overview of the comprehensive network architecture of the 
YOLOv5 system. The YOLOv5 model is composed of three fundamental components: the 
backbone, neck, and head. Initially, Cross-Stage-Partial (CSP) 1 and CSP2, featuring two 
distinct bottleneck CSP structures, aimed at reducing redundant information. This scaling 
down of floating-point operations per second (FLOPS) and model parameters has a dual 
impact, expediting the inference process and concurrently enhancing precision, leading 
to a more compact model size. Specifically, CSP1, designated as the backbone, and CSP2, 
referred to as the neck, were utilized for feature fusion, as elaborated below. 

Furthermore, along with CSP1, the core architecture integrates Convolution Layer + 
Batch Normalization + Sigmoid Linear Unit (CBS) and spatial pyramid pooling fast mod-
ules. The spatial pyramid pooling fast module comprises three consecutive 5 × 5 MaxPool 
layers, processing input sequentially through each layer and then combining the outputs 
using a Concat operation, followed by a CBS operation. This method of spatial pyramid 
pooling, known as spatial pyramid pooling fast, is recognized for its efficiency, delivering 
comparable results more rapidly compared to traditional spatial pyramid pooling tech-
niques. 

Lastly, the Neck component incorporates a PANet, which utilizes an improved bot-
tom-up pathway structure. PANet integrates a novel Feature Pyramid Network (FPN) to 
convey feature information efficiently starting from the lowest feasible level. 

Figure 2. The preprocessing of the brain tumor images dataset [33].

The following steps were performed to prepare the images for subsequent analysis:
image rescaling was done to establish consistency and facilitate efficient processing, where
the brain tumor frames were rescaled to a standardized size of 256 × 256 pixels. This
resizing step ensured that all images have the same dimensions, regardless of their original
resolution [34].

Intensity normalization was employed to standardize the image intensities across
different scans [35]. This step reduces variations caused by different imaging protocols
or equipment. Min–max scaling was applied to map the intensity values to a normalized
range, or alternatively, z-score normalization was used to transform the intensities to have
a mean of zero and a standard deviation of one.

Noise reduction techniques were applied to improve image quality and minimize the
impact of noise on subsequent analysis [36]. Gaussian smoothing and median filtering were
utilized to reduce noise artifacts in the brain tumor images. These techniques effectively
suppressed high-frequency noise while preserving important image details [37].

Skull stripping was performed to focus the analysis solely on the brain tissue and
remove extraneous regions, such as the skull and non-brain structures [38]. A combination
of automated and manual techniques, including region growing and thresholding, was
employed to segment and extract the brain region from the images. This step ensured that
subsequent analysis was focused on the relevant brain structures.

Image registration was performed to align brain tumor images to a common coordinate
system, accounting for variations in patient positioning and imaging protocols. Rigid or
deformable registration algorithms were employed to align the images, enabling accurate
comparisons between different scans or time points [39].

Bias field correction techniques were applied, as imperfections in the imaging system
can cause intensity variations across the brain tumor images. Bias field correction tech-
niques, such as N4ITK or FSL FAST, were applied to remove these intensity variations [40].
This step ensured that the images were free from intensity biases, providing a more accurate
representation of the underlying tissue structures [41].

Image enhancement techniques were applied to improve visualization and high-
light subtle image features. Histogram equalization, adaptive contrast enhancement, and
CLAHE were employed to enhance the image contrast while preserving important de-
tails. These techniques improved the visibility of tumor regions and facilitated subsequent
analysis [42].

With region of interest extraction, the identification of the region of interest (ROI),
which includes the tumor and surrounding brain tissues, was a critical step in the analysis
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of brain cancer pictures [43]. Manual or automated segmentation techniques, such as
thresholding, active contours (e.g., level sets), or deep-learning-based segmentation models,
were utilized to extract the ROI accurately.

Through the application of these preprocessing approaches to the brain tumor image
dataset, several enhancements were achieved. Standardization of the images occurred,
reducing noise while simultaneously amplifying critical features [44]. This comprehensive
preprocessing pipeline ensured the dataset was suitably primed for subsequent analysis,
significantly aiding in the precise identification and characterization of brain tumors.

3.4. The Architecture of YOLOv5

The YOLOv5 object detection framework, known for its real-time, one-stage capabili-
ties, stands out as an appropriate option for our requirements due to its fast inference speed
and superior object identification accuracy [45]. Thanks to the continued work of its devel-
opers, YOLO has established itself as a highly effective solution for object detection across
Pascal VOC as well as the Microsoft COCO datasets. The four main variants of YOLOv5
are the benchmark YOLOv5l, the extended YOLOv5x, and the simplified preset versions,
YOLOv5s and YOLOv5m. The number of feature extraction modules and convolution
kernels installed at various network nodes, which leads to decreased overall model sizes
and parameter counts, is the main difference between these network types.

Figure 3 provides an overview of the comprehensive network architecture of the
YOLOv5 system. The YOLOv5 model is composed of three fundamental components: the
backbone, neck, and head. Initially, Cross-Stage-Partial (CSP) 1 and CSP2, featuring two
distinct bottleneck CSP structures, aimed at reducing redundant information. This scaling
down of floating-point operations per second (FLOPS) and model parameters has a dual
impact, expediting the inference process and concurrently enhancing precision, leading
to a more compact model size. Specifically, CSP1, designated as the backbone, and CSP2,
referred to as the neck, were utilized for feature fusion, as elaborated below.
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Furthermore, along with CSP1, the core architecture integrates Convolution Layer + Batch
Normalization + Sigmoid Linear Unit (CBS) and spatial pyramid pooling fast modules. The
spatial pyramid pooling fast module comprises three consecutive 5 × 5 MaxPool layers,
processing input sequentially through each layer and then combining the outputs using a
Concat operation, followed by a CBS operation. This method of spatial pyramid pooling,
known as spatial pyramid pooling fast, is recognized for its efficiency, delivering compara-
ble results more rapidly compared to traditional spatial pyramid pooling techniques.

Lastly, the Neck component incorporates a PANet, which utilizes an improved bottom-
up pathway structure. PANet integrates a novel Feature Pyramid Network (FPN) to convey
feature information efficiently starting from the lowest feasible level.
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3.5. Non-Local Neural Networks

The structure of non-local neural networks (NLNNs) is characterized by specialized
layers or modules designed to facilitate the modeling of extensive dependencies and the
incorporation of global context within an image [46]. These dedicated layers augment
the capacity of neural networks to extract meaningful features by taking into account the
interdependencies among distant regions.

The fundamental element of NLNNs is the non-local operation, pivotal for capturing
long-range dependencies [47]. This operation calculates the response at a specific position
by consolidating information from all positions in the input feature map. It accomplishes
this through a two-step process: first, a pairwise similarity computation is performed
between the query position and all other positions, and second, a weighted sum of the
values at those positions is computed. The resulting response signifies the contribution
of each position to the query position, taking into account their spatial relationships. The
architecture of NLNNs is depicted in Figure 4 [48].
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The overarching architecture of NLNNs can be succinctly summarized as follows.
The input to an NLNN typically comprises a feature map or tensor extracted from an

image through prior layers of a neural network. This feature map contains local features
that NLNNs aim to improve by capturing non-local dependencies.

The pivotal element of NLNNs, the non-local operation, processes the input feature
map, computing non-local responses by evaluating pairwise similarities between posi-
tions and aggregating information accordingly. The resulting response map encompasses
enhanced features that effectively capture long-range dependencies.

The non-local responses are typically merged with the original input feature map
through an integration step [49]. This integration may involve element-wise addition,
concatenation, or other operations designed to fuse local and non-local information.

NLNNs may incorporate extra layers or modules to further process the enhanced
feature map. These can include convolutional layers, pooling layers, or other components
commonly found in neural network architectures [50]. The configuration of these layers is
contingent upon the overall design of the NLNN and the specific task.

The final output of the NLNN is achieved by running the processed feature map
through the remaining layers of the network. These layers can include classification layers,
regression layers, or other components tailored for the specific task being performed. It is
noteworthy that the architecture of NLNNs can vary based on the implementation and task
requirements [51]. Various adaptations and extensions of NLNNs have been proposed in
the literature to address specific challenges and optimize performance in diverse domains.

The architecture of NLNNs is purposefully crafted to capture long-range dependencies
and global context within an image. This design facilitates the extraction of meaningful
features; as a result, this approach enhances the performance of neural networks in tasks
like image detection, object recognition, and semantic extraction.
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3.6. K-Means++

In object detection methodologies, achieving high-precision detection hinges on the uti-
lization of suitable anchor boxes. Anchor boxes represent a predefined set of initial regions
characterized by fixed dimensions and aspect ratios. The effectiveness of model training is
contingent upon the alignment of predicted boundary boxes with actual boundary boxes,
emphasizing the importance of anchor parameters. Specifically, the original YOLOv5 model
necessitates customization of anchor parameters to cater to the requirements of specific
datasets during the training process.

To address this, K-means clustering, recognized for its simplicity and efficiency, has
been incorporated into the YOLOv5 model to derive the initial anchor boxes. However,
the conventional K-means algorithm involves challenges related to the artificial setting of
initial clustering centers, potentially yielding discernible differences in the final clustering
output. One key limitation of the K-means algorithm is its reliance on specified inputs,
such as the initial clustering centers and the predetermined number of clusters denoted
as ‘k’. Determining the exact locations of clusters and choosing the initial cluster centers
beforehand can be challenging and may impact the algorithm’s effectiveness.

In this study, the K-means++ algorithm was employed to obtain the initial set of
anchor boxes (‘k’). The K-means++ algorithm addresses inherent issues in the original
K-means algorithm by optimizing the selection of initial points. This optimization process,
particularly beneficial for detecting small objects, significantly mitigates classification error
rates associated with anchor box sizes.

3.7. SPPF+

The most recent version of YOLOv5 incorporates the spatial pyramid pooling fast
(SPPF) as the conclusive module within the model’s backbone. This SPPF module consists
of three layers of 5 × 5 MaxPool operations, wherein inputs undergo iterative processing.
Subsequently, the output from these layers is concatenated before the execution of the
CBS (Convolutional Block and Shuffle) operation. The spatial pyramid pooling fast (SPPF)
technique leverages skip connections and maximal pooling to capture features at different
scales. This method enhances the feature map’s representational quality by combining local
and global characteristics. To weed out unimportant information and concentrate on key
characteristics, maximum pooling, which extracts the maximum value from a collection
of image regions using a rectangle mask, is utilized. However, it is noteworthy that while
maximum pooling aids in reducing extraneous information, it may lead to the exclusion of
less informative feature data.

This research endeavor elevates the notion of feature reuse by implementing a dense
link construction inspired by DenseNet to enhance the spatial pyramid pooling fast (SPPF).
Through this approach, we derive the SPPF module, strategically designed to mitigate
the loss of feature information associated with maximum module pooling. The resultant
SPPF+ module aptly preserves global information crucial for discerning fires impacting
diminutive target forest areas.

3.8. Fine-Tuning, Transfer Learning, and Model Training

Insufficient training data can adversely impact the effectiveness and accuracy of
deep learning (DL) tasks [52]. Nevertheless, transfer learning serves as a remedy by
enabling models to achieve significant results without the need for extensive data. In this
investigation, we embraced transfer learning and employed pre-trained weights derived
from the COCO dataset to augment the performance of our model in the detection of various
brain tumors. By capitalizing on the previously acquired features from COCO, our model
gained essential image recognition capabilities crucial for the tumor detection process.
Moreover, to further refine the pre-trained model, we implemented a technique known
as fine-tuning. This process involved adjusting resource allocation to prevent memory
depletion during both training and testing, thereby optimizing the overall performance of
the model.
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The initial phase of fine-tuning the model involved adjusting the default class numbers
from 80 to 3, corresponding to the three types of brain tumors: glioma, meningioma, and
pituitary. This modification became imperative due to the default number of classes in
the COCO dataset being 80. As a result, the Conv filters, defined in the equation, needed
to shift from the default value of 255 to 24. This adjustment was made considering that
C represents the number of classes, five corresponds to the YOLO coordinates (which
typically include coordinates for the bounding box and objectness score), and three denotes
the number of various scaled bounding boxes K used in the YOLO algorithm.

filters = 3 ∗ (5 + C) (1)

To refine the YOLO-based model through fine-tuning, various hyperparameters, in-
cluding batch size, subdivisions, learning rate, momentum, decay, and iterations, were
specifically customized for this study, as detailed in Table 4. The fine-tuning process in-
volved training the model with a batch size of 64, a subdivision of 8, and 6000 iterations.
The learning rate, momentum, and decay values were optimized to align with the available
resources, resulting in values of 0.00261, 0.9, and 0.0005, respectively. Furthermore, to
monitor the training progress and obtain initial performance results, the weights were
automatically serialized every 1000 iterations.

Table 4. Model fine-tuning using the hyperparameter setup.

Hyperparameter Value

Batch Size 64
Subdivisions 8

Learning Rate 0.00001
Warmup Epochs 3.0

Box 0.05
IOU Threshold 0.20

Momentum 0.9
Decay 0.0005

Iterations 6000

3.9. Evaluation Metrics

Following the completion of the training and testing phases, the subsequent step
involved evaluating the model’s performance utilizing standardized metrics tailored for
object detection. In this study, a threshold of 0.5 was applied to assess metrics, including
Intersection over Union (IoU), Precision (PR), Recall (RE), and mean Average Precision
(mAP). The calculation of these metrics was based on the identification of True Positives
(TP), False Positives (FP), and False Negatives (FN) by the model. The evaluation process
was conducted using a test set comprising 610 MRIs [53].

In the evaluation process, TP denotes the correctly detected tumor classes with ac-
curate labels, FP signifies non-tumors that were incorrectly detected, and FN represents
tumors that went undetected by the model. Notably, as the dataset did not encompass
negative samples (MRIs without lesions or tumors), True Negatives were not factored
into the assessment. Consequently, the F1-score was deemed a more appropriate metric
for evaluating the harmonic mean between FNs and FPs in the context of an unbalanced
dataset, offering a more robust evaluation than relying solely on accuracy [54].

APCij =
1
m∑m

j=1 PrecisionCij (2)

The mean Average Precision (mAP) is computed by averaging the values of Average
Precision (AP) calculated for each category [55]. Utilizing mAP as the primary metric
allows for the identification of the model that attains the most superior overall performance
in the specific task of detecting brain tumors. The mathematical representation of the
equation for calculating mAP is formally expressed as follows:

mAP =
1
N ∑N

i=1 APi. (3)
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The Intersection over Union (IoU) quantifies the degree of overlap between two bounding
boxes. The IoU is calculated using the following equation, which determines the IoU by
dividing the intersection area of the boxes by the area of their union.

IoU =
Area o f Intersection

Area o f Union
(4)

In the medical domain, metrics like Precision (PR), Recall (RC), and F1-Score play a
crucial role in evaluating the accuracy of positive predictions among all detections, potential
detections, and achieving a balance between PR and RE, respectively. Likewise, within the
realm of Deep Learning (DL), these metrics are employed to assess a model’s performance
and determine its reliability for a specific task. The calculations for these metrics are based
on the equations below:

PRCij =
TPCij

TPCij + FPCij

, (5)

RCCij =
TPCij

TPCij + FNCij

, (6)

F1 − Score =
2 ∗ (PR ∗ RC)

PR + RC
(7)

These measurements offer important insights into how well the model can accurately
predict positive outcomes, its sensitivity to detecting relevant instances, and the overall
balance between precision and recall in addressing the complexities of medical and deep
learning applications.

4. Experimental Results and Discussion
4.1. Overall Model Performance

In this section, we present an exposition on the outcomes derived from the training and
evaluation processes applied to the fine-tuned YOLOv5 model using magnetic resonance
imaging (MRI) images, accompanied by a thorough performance analysis. A series of
preprocessing techniques and data augmentation methods were implemented to augment
the dataset. The suggested model underwent training with varying hyperparameters in
order to optimize its performance. The training procedure for the refined YOLOv5 model
occurred on a personal computer equipped with Nvidia GeForce 1080Ti GPUs and 32 GB
RAM. Figure 5 illustrates the average accuracy and losses incurred by the model proposed
in this research study.
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4.2. Comparison and Evaluation of the Proposed Method against State-of-the-art Techniques

The model proposed in this study, derived from the fine-tuned YOLOv5 architecture,
underwent a comprehensive evaluation and comparison with contemporary methodologies
for brain tumor detection, as outlined in [56]. In this section, we present a detailed analysis
of its performance relative to these established techniques. The evaluation of the proposed
model involved a meticulous examination utilizing benchmark datasets and established
metrics for assessment. Performance metrics, including accuracy, precision, recall, and F1
score—commonly employed in the evaluation of object detection models—were utilized to
gauge the effectiveness of the proposed model [57]. Figure 6 portrays the Precision and
Recall metrics for brain tumor detection employing improved YOLOv5. Comparative anal-
ysis with existing state-of-the-art techniques revealed that the proposed model exhibited
either competitive or superior performance, particularly in terms of overall accuracy and
detection capabilities. The fine-tuning process, entailing the training of the YOLOv5 model
specifically for brain tumor detection, significantly contributed to its enhanced performance
in this specific task.
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An inherent strength of the proposed model lies in its capacity to accurately and effi-
ciently detect brain tumors within MRI images. Leveraging the advanced object detection
capabilities embedded in the YOLOv5 architecture, the model excels in identifying brain
tumor regions with a remarkable level of precision. This attribute proves pivotal for early
detection and diagnosis, facilitating prompt medical intervention. Furthermore, the integra-
tion of YOLOv5 into the proposed model affords real-time or near-real-time performance,
rendering it particularly suitable for applications demanding swift and efficient tumor
detection, such as in clinical settings.

The comparative analysis of models trained using YOLOv5 and YOLOv5 in conjunc-
tion with NLNNs is delineated in Table 5, offering a comprehensive overview of the analysis
process and its corresponding outcomes. The architectural design and optimizations incor-
porated into the model adeptly manage computational demands, effectively harnessing
both CPU and GPU resources. Although the evaluation results indicate competent perfor-
mance, further research and assessment employing diverse datasets and comparisons with
other state-of-the-art techniques would contribute to a more nuanced understanding of the
proposed YOLOv5-based model’s efficacy in brain tumor detection tasks and its potential
advantages in this domain.

Table 5. Comparison analysis of YOLOv5 and improved YOLOv5 with NLNNs.

Model Precision Recall mAP

YOLOv5 81.9 83 87
Improved YOLOv5 83.5 86 85.2

This section furnishes a synopsis of the performance outcomes derived from the con-
ducted experiments. It is imperative to underscore that those diverse models were trained,
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employing varying input sizes, to discern the most efficacious variant for addressing the
specified problem. Figure 7 visually represents the confusion matrices pertaining to the
proposed model, utilizing the testing data.
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Figure 8 shows a label correlogram which is a graphical representation of brain
tumor dataset and visualization. It is a visual tool that helps to display relationships and
associations among labels or categories within a dataset.

The process of training the model by our proposed method consisted of 6000 epochs.
The model spent 1.28 it/s per iteration in this process. It took a total of 2.1 h for 6000 iterations
to train the model. We tried to use several factors to speed up this time spent. For example,
we trained the model using a computer GPU device. This, in turn, accelerated the train
time. The main reason for this increase in time is the large number of iterations. But our
model has given a satisfactory result for each iteration process as we mentioned in the
above sections.

The label correlogram typically consists of a grid where each cell represents the
correlation or association between two labels or categories. The cells are filled with colors
or patterns indicating the strength and direction of the relationship. This can be particularly
useful when dealing with categorical data or variables, allowing for a quick overview of
how different categories relate to each other.

Based on the analysis of the results in Figure 9, it can be concluded that the proposed
method produces satisfactory or favorable outcomes.

In the following Figure 10, we can see that the proposed YOLOv5 model performs
well in training and validation set.
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In Section 4, we conducted an ablation study comparing the enhanced fine-tuned
YOLOv5 with the original YOLOv5 model. Tables 5 and 6 display the results, offering in-
sights into the effects of various attention mechanisms on model accuracy and information
capture. Through a systematic exploration of NLNNs+, K-means, and spatial pyramid
pooling fast+ (SPPF+) modules, illustrated in Figure 4, we discerned how these enhance-
ments influence the performance of our YOLOv5-based brain tumor detection model. This
experimental approach allowed us to gain a valuable understanding of each component’s
contribution, thereby facilitating the refinement and optimization of an accurate brain
tumor detection method.
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Table 6. Comparative analysis of proposed work with previous works.

Contribution Model Approach Accuracy (%) Dataset

Soheila Saeedi et al. [58] Elementary
features-model-based Detection 96.47% Brain tumor classification (MRI):

four classes neural network

Sarmad Maqsood et al. [59] MobileNetV2 Segmentation 97.47% T1-weighted contrast-enhanced MRI

Shah Hussain et al. [60] U-net ETISTP Model Segmentation 96% T1-weighted contrast-enhanced MRI

Ejaz Ul Haq et al. [61] CNN classifier Classification 97.3% T1-weighted contrast-enhanced MRI

S. Patil et al. [62] SCNN classifier/VGG16 Classification 97.7% MRI dataset

Talukder et al. [63] DL (ResNet50V2) Classification 99.6% Brain tumor classification (MRI):
three classes

Woźniak et al. [64] CNN classifier Classification 95.7% CT brain tumor classification

Abdusalomov et al. [65] YOLO7 Classification 99.5% MRI scan images (kaggle): four
classes

InceptionV3

In addition, a qualitative assessment of the proposed brain tumor detection method-
ology was conducted. To achieve this objective, four images were randomly chosen from
the test set of the brain tumor detection dataset. The qualitative outcomes of the refined
YOLOv5 model for these selected images are depicted in Figure 11. It is noteworthy
that these four images exhibit diverse sizes and contextual variations. As illustrated
in Figure 11 the application of the proposed brain tumor detection approach using the
enhanced YOLOv5 model demonstrated precise identification of brain tumors across vary-
ing sizes.

In our study, we addressed the issue of excess black area surrounding the brain region
in the MRI images. To mitigate this effect, we performed a cropping process to remove the
non-brain regions, specifically the black areas, while preserving the brain region of interest.
This cropping step was undertaken to enhance the quality of the input data, ensuring that
our brain tumor detection model focuses solely on the relevant brain structures, ultimately
improving the accuracy and reliability of our findings. For these operations, contours
were detected from the top, bottom, left, and right directions based on the presence of
black regions.
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In the experimental section, we used MRI images from an existing dataset. We are
trying to detect small tumors as much as possible to show the effectiveness of the proposed
method. Indeed, the proposed model may encounter challenges in accurately detecting
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small brain tumors, as deep learning models heavily rely on the training images for learning.
To address this limitation and enhance the model’s performance, future improvements
can be achieved through the creation of a dedicated dataset comprising small brain tumor
images [65–70]. By assembling a comprehensive dataset specifically focused on small brain
tumors, we can expose the model to a diverse array of such cases, enabling it to better
discern the subtle characteristics and intricate patterns associated with these tumors. This
process will facilitate the extraction of relevant features and enhance the model’s ability to
detect small tumors more effectively. Through ongoing efforts to curate a representative
and diverse dataset, we can iteratively train and refine the model, ultimately augmenting
its sensitivity and specificity in detecting small brain tumors. Emphasizing such dataset
curation and model enhancement endeavors will contribute significantly to the continued
progress of deep learning applications in the field of brain tumor detection, ultimately
benefiting patients and clinicians alike in the medical community [71–73].

5. Conclusions

This study highlights the efficacy of utilizing pre-trained and fine-tuned object detec-
tion models, specifically exemplified by the YOLOv5 model, for the accurate diagnosis
of brain tumors from MRI images. In contrast to classification techniques, the proposed
methodology excels in precisely localizing brain tumors within MRI scans, presenting
specific classifications with reduced intricacy. Moreover, its compatibility with diverse
platforms is notable due to its modest storage requirements and low computational over-
head, distinguishing it from segmentation methods. Based on the experimental results and
evaluation, it was concluded that the enhanced YOLOv5 model is robust and outperforms
other methods in the precision and recall metrics, with 83.5% and 86%, respectively, on the
brain tumor dataset. Comparative analysis with previous studies employing bounding box
detection methodologies for meningioma, glioma, and pituitary brain tumors reveals supe-
rior precision in this work. Nonetheless, it is crucial to acknowledge inherent limitations
associated with the bounding box detection approach utilized herein. The use of bounding
boxes may compromise the meticulous delineation of tumor boundaries when contrasted
with segmentation techniques.

We acknowledge the imperative need for additional investigation and comprehensive
testing to thoroughly validate the efficacy of our proposed method. Our study advances
this field by utilizing five different convolutional models and transfer learning architectures.
Brain tumor diagnosis via medical imaging is still a major area of research attention. Still,
there is a lot of potential in this subject for more research and development. Both patients
and medical professionals dealing with the difficulties of treating brain malignancies stand
to gain from the further development of brain tumor detection systems through ongoing
research. We can increase diagnostic capabilities and, eventually, patient outcomes by
improving detecting technologies and deepening our understanding of this field [74,75].

The future direction of our research involves conducting comprehensive performance
evaluations of the proposed method using a larger dataset. This will help us assess its
ability to distinguish between various types of brain lesions. While the current dataset
serves as an initial step for brain tumor detection, future studies should aim to incorporate
a more diverse and clinically relevant range of brain lesions, addressing the complexities
found in real-world diagnostic scenarios. This approach will provide a more robust and
applicable understanding of the model’s performance across different clinical situations [76].
Additionally, creating synthetic images with small lesions, guided by the expertise of
medical professionals, can enhance the dataset and ensure the model encounters cases
that may not be present in real data. Furthermore, combining predictions from multiple
detection models, each trained on different subsets of data, can improve overall detection
performance, particularly when dealing with diverse lesion sizes [77].
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